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§ Alp Dener (ANL) – Large-scale optimization
§ Xiang Huang (ANL) – Composite optimization
§ Sven Leyffer (ANL) – Discrete optimization
§ Juliane Müller (LBNL) – Sensitivity analysis
§ Todd Munson (ANL) – Large-scale optimization
§ Mauro Perego (SNL) – Inverse problems
§ Ryan Vogt (NCSU) – Discrete optimization
§ Stefan Wild (ANL) – Multi-objective optimization

Team



§ Problem formulation

§ Continuous and discrete
§ Convex and nonconvex
§ PDE-constrained

• Engineering design
• Data assimilation
• Inverse problems
• Design of experiments
• Simulation-based control

§ Data analysis
• Sparse regression
• Joint sparsity

TAO Large-Scale Solvers:
Preconditioned Nonlinear Conjugate Gradient

min
x

f(x)

s.t. bl  x  bu
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Alp Dener and Todd Munson (ANL), and Adam Denchfield (UIC)



§ Preconditioned nonlinear conjugate gradient can be competitive with quasi-Newton 
with smaller memory footprint
• Diagonalized quasi-Newton formula makes a good preconditioner for modern 

nonlinear conjugate gradient methods
• Quasi-Newton-based preconditioner reduces reliance on specialized line 

searches

TAO Large-Scale Solvers:
Preconditioned Nonlinear Conjugate Gradient

Alp Dener and Todd Munson (ANL), and Adam Denchfield (UIC)

Decreasing

(a) Comparison preconditioned to nominal 
methods based on function/gradient evaluations

(b) Comparison preconditioned to nominal 
methods based on linesearch steplength

(c) Comparison preconditioned to nominal 
methods based on time



§ Developed a solver for composite optimization with a 
smooth term and a non-smooth joint-sparse regularizer term

• Construct a smooth approximation and apply the Gauss-
Newton method

• Provides flexibility to include joint sparsity with a 
dictionary transform and bounds

• Available in PETSc/TAO 3.11 release
§ Solver is scalable and suitable for large-scale joint-sparse 

regression applications, such as tomography reconstruction
§ Demonstrated superior performance compared to widely-

used TwIST solver

TAO Composite Optimization Solver
for Sparse Regression

Our method applied to tomography reconstruction. It shows 
that our solver yields 16.71 dB better when compared to the 
existing TwIST solver using similar computation time.

(a) Ground truth for comparison

(b) Our solver, PSNR = 46.01 dB

(c)  TwIST solver, PSNR = 29.30 dBXiang Huang, Alp Dener, and Todd Munson (ANL)



§ Developed a solver for composite optimization with a smooth term 
and a non-smooth joint-sparse regularizer term

• Construct a smooth approximation and apply the Gauss-
Newton method

• Provides flexibility to include joint sparsity with a dictionary 
transform and bounds

• Available in next PETSc/TAO release
§ Solver is scalable and suitable for large-scale joint-sparse 

regression applications, such as hyperspectral image un-mixing

TAO Composite Optimization Solver 
with Joint-Sparsity Regularization

Xiang Huang, Alp Dener, and Todd Munson (ANL)

(a) Matrix B: 188 hyperspectral 
bands for 2500 image pixels

(b) Matrix A: 188 hyperspectral 
bands of 240 “minerals”

(c) Computed X: fractions of 240 
“minerals” for 2500 image pixels

(d) Alunite component (e) Pyrophyllite component 

Figure: Joint-sparsity recon-
struction for hyperspectral 
un-mixing.  (a)  Cuprite 
sample, 188 spectral bands 
and 50x50 image pixels. 
(b) 240 pure spectral 
signatures. (c) Solution. 
(d) & (e) Alunite and 
Pyrophyllite reconstructions.



Discrete Optimization Methods
Design of an Electromagnetic Cloaking Device

(a) Nominal and robust design for 20x20 control mesh (b) Nominal and robust design for 20x20 control mesh

Sven Leyffer and Todd Munson (ANL) and Ryan Vogt (NCSU)

§ Developed a model for designing an electromagnetic cloaking device

§ Produced robust model that considers multiple angles
§ Developed trust-region method to refine relaxed, rounded solutions obtained 

from TAO bound-constrained solvers



§ NP: Nuclear Computational Low Energy Initiative (NUCLEI) – PI Joe Carlson (LANL), Stefan Wild 
• Calibration and optimization of energy density functionals
• Support and modeling extensions for POUNDERS
• Integration with UQ (w/ E. Lawrence, LANL)

§ HEP: Community Project for Accelerator Science & Simulation (ComPASS4) – PI Jim Amundson 
(Fermilab), Stefan Wild
• New optimization platform for particle accelerator design
• Applications and extensions of POUNDERS

§ HEP: Accelerating HEP Science: Inference and Machine Learning at Extreme Scales – PI Salman Habib 
(ANL), Juliane Müller & Stefan Wild
• Development of methods for multi-fidelity optimization
• Accelerate Bayesian parameter estimation with optimization (w/ R. Gramacy & D. Higdon, VTech)
• Modeling and solvers for goal-oriented ML-based regression

§ HEP: Data Analytics on HPC – PI Jim Kowalkowski (Fermilab), Sven Leyffer & Juliane Müller
• Least-squares problems with integer variables and without derivatives
• Sensitivity analysis integrated in optimization algorithms for expensive black-box problems

§ BER: Probabilistic Sea-Level Projections from Ice Sheet and Earth System Models – PI Stephen Price 
(LANL), Juliane Müller & Mauro Perego
• Optimization capability in Albany for solving transient large-scale PDE-constrained 

optimizations problems
• Integrate efficient optimization methods in BISICLES initialization

Application interactions


